пятница, 30 сентября 2022 г.

 30.09.2022

Группа 306 

Предмет : Устройство, эксплуатация транспортных средств. 

Тема урока: Газовый редуктор низкого давления 

Цель урока : изучить данную тему, ответить на вопросы письменно. 

Газовые редукторы низкого давления

Редукторы низкого давления газобаллонного оборудования ГБО автомобилей применяются как в газовых системах питания на газе метан, так и в газовых системах питания на пропан-бутановой смеси. 

Редукторы низкого давления газобаллонного оборудования ГБО автомобилей, устройство и принцип работы.

Редукторы низкого давления мембранно-рычажного типа имеют две ступени, конструктивно объединенные в один узел. В первой ступени происходит предварительное снижение давления (от 0,15 до 0,04 МПа).

Если редукторы низкого давления работают на сжиженном нефтяном газе, в них одновременно со снижением давления газа происходит его испарение за счет теплоты, подводимой в герметичную полость, подсоединенную к системе охлаждения двигателя. При использовании редукторов низкого давления в системе питания на метане нет необходимости подключать эту полость редуктора к системе охлаждения двигателя, так как газ во всей системе находится в газообразном состоянии.

Затем газ поступает во 2-ю ступень редуктора, где происходит снижение давления до значений, близких к атмосферному. Редукторы низкого давления газобаллонного оборудования ГБО автомобилей поддерживают эти величины давления при различных режимах работы двигателя. Для обеспечения работы в режиме холостого хода могут использоваться системы холостого хода, выполненные как отдельные каналы подачи газа параллельно второй ступени.

Управление подачей газа осуществляется за счет эжекции (всасывания) газа во впускной коллектор из выходного патрубка редуктора низкого давления, которая изменяется при открытии или закрытии дроссельной заслонки карбюратора. Конструктивных отличий при использовании компримированного и сжиженного нефтяного газов практически нет.

Встречаются конструкции, в которых редуктор высокого давления объединен с редуктором низкого давления в трехступенчатые редукторы, которые используются в системах питания на газе метан.

Все автомобильные редукторы низкого давления имеют устройства для автоматического прекращения поступления газа при остановке двигателя. Это обеспечивает надежное перекрытие подачи газа, даже если двигатель прекратит работу, и пожарную безопасность ГБО.

Принцип работы редуктора низкого давления газобаллонного оборудования ГБО автомобилей.

При неработающем двигателе давление в полости 1-й ступени равно атмосферному и клапан открыт под действием пружины. При запуске двигателя газ поступает в 1-ю ступень через фильтр. Под действием давления в 1-й ступени перемещаются мембрана и рычаг вместе с клапаном. В результате образовавшегося разрежения мембрана перемещается вверх, освобождая ход упорной пластины и соединенного с ним штока, рычага и клапана.

Под действием давления газа в 1-й ступени открывается клапан и газ поступает в полость 2-й ступени, оказывая давление на мембрану. Газ поступает через отверстие в полость экономайзера и далее по патрубку подвода газа — в карбюратор-смеситель.

В режиме минимальных оборотов холостого хода обратный клапан закрыт, и газ поступает по каналам, регулируемым винтами. При увеличении нагрузки на двигатель дроссельная заслонка открывается. Расход газа, поступающего через клапан возрастает. Разрежение в вакуумной полости экономайзера уменьшается, клапан отрывает канал, и газ поступает через отверстие мощностной регулировки. Поток газа открывает обратный клапан, устремляясь в карбюратор-смеситель.

Регулировка давления в 1-й ступени выполняется изменением усилия пружины при вращении регулировочной гайки. Регулировка давления во 2-й ступени выполняется изменением усилия пружины при вращении регулировочного ниппеля. Ход штока и соответственно клапана регулируется винтом. Для контроля давления в 1-й ступени служит датчик. Указатель этого давления находится в кабине водителя. Испарение газовой смеси происходит вне редуктора в специальном испарителе.

Ответить на вопросы : 

1. Назначение редуктора низкого давления ? 

2. Устройство редуктора низкого давления? 

3. Принцип работы редуктора низкого давления? 

 30.09.2022

Группа 501

Предмет: Эксплуатация и Т.О С/Х  машин 

Тема урока: Неисправности КШМ и ГРМ.

Цель урока :изучить данную тему, ответить на вопросы. 

  1. Основные неисправности кшм

Технически исправный двигатель должен развивать полную мощность, работать без перебоев на полных нагрузках и на холостом ходу, не перегреваться. На исправном двигателе не должно быть утечки масла через уплотнения. Неисправность кривошипно-шатунного механизма можно определить по внешним признакам без разборки двигателя. К таким признакам относятся: появление посторонних стуков и шумов, падение мощности двигателя, повышенный расход масла, перерасход топлива, появление дыма в отработавших газах и др.

Стуки и шумы в двигателе возникают в результате появления увеличенных зазоров между сопряженными деталями, что свидетельствует об их износе. Стуки в двигателе прослушивают при помощи стетоскопа, что требует определенного навыка.

При износе поршня и цилиндра, а также при увеличении зазора между ними возникает звонкий металлический стук, хорошо прослушиваемый при работе холодного двигателя. Резкий металлический стук на всех режимах работы двигателя свидетельствует об увеличении зазора между поршневым пальцем и втулкой верхней головки шатуна. Усиление стука при резком увеличении числа оборотов коленчатого вала свидетельствует об износе вкладышей коренных или шатунных подшипников, причем стук более глухого тона указывает на износ вкладышей коренных подшипников.

При большом износе вкладышей обычно происходит выплавление их антифрикционного слоя, что сопровождается резким падением давления масла. В этом случае двигатель должен быть немедленно остановлен, так как дальнейшая его работа может привести к поломке деталей.

Падение мощности двигателя возникает при износе или залегании поршневых колец в канавках, износе поршней и цилиндров, а также при плохой затяжке головки цилиндров. Эти неисправности вызывают падение компрессии в цилиндре.

При проверке компрессии компрессометром вывертывают свечу зажигания проверяемого цилиндра и вместо нее устанавливают наконечник компрессометра. Затем полностью открывают дроссельную заслонку, воздушную заслонку карбюратора и проворачивают коленчатый вал двигателя при помощи стартера в течение 2-3 с. Величина компрессии в исправном цилиндре должна быть в пределах 7,0-8,0 кГ/см2 (0,7-0,8 МПа). Разница в величине компрессии в разных цилиндрах не должна быть больше 1 кГ/см2 (0,1 МПа). Таким образом последовательно проверяют компрессию в каждом цилиндре.

Повышенный расход масла, перерасход топлива, появление дыма в отработавших газах (при нормальном уровне масла в картере) обычно появляются при износе и залегании поршневых колец или износе цилиндров. Залегание колец можно устранить без разборки двигателя, для чего в каждый цилиндр горячего двигателя следует залить на ночь через отверстие для свечи зажигания по 20 г смеси денатурированного спирта и керосина в равных частях. Утром двигатель следует пустить, дать поработать 10-15 мин, после чего заменить масло.

Отложение нагара на днищах поршней и камер сгорания, расположенных в головках цилиндров, снижает теплопроводность, что вызывает перегрев двигателя, падение его мощности и повышение расхода топлива. Для удаления нагара необходимо выпустить охлаждающую жидкость, снять приборы, укрепленные на головке цилиндров, и, отвернув гайки, осторожно отделить головку цилиндров, не повредив при этом прокладку. Если прокладка приклеилась к блоку или головке цилиндров, ее следует отделить, пользуясь тупым ножом или тонкой широкой металлической полоской.

Нагар следует удалять деревянными скребками или скребками из мягкого металла, чтобы не повредить днище поршней или стенок камеры сгорания. Удалять нагар следует поочередно с каждого цилиндра, закрывая чистой ветошью соседние цилиндры.

Для того чтобы легче удалить нагар, его следует размягчить, положив на него ветошь, смоченную керосином. После удаления нагара все детали необходимо очистить и установить на место.

Болты и гайки крепления головок цилиндров затягивают динамометрическим ключом на холодном дизеле или не ранее чем через 30 мин после его остановки в порядке возрастания номеров, как показано на рис. 1. Моменты затяжки болтов крепления головки цилиндров для дизеля КамАЗ-740 должны составлять: в первый прием — 4—5 ктс-м; во второй прием — 12—15 кгс-м; в третий прием — 21—19 кгс-м.

Рис. 1. Затяжка болтов головки блока

Момент затяжки гаек крепления головок цилиндров дизеля ЯМЗ-238 должен быть 22—24 кгс-м. Нельзя затягивать гайки большим моментом во избежание разрушения окантовок прокладок головок цилиндров и прогара самих прокладок.

Болты головки блока цилиндров 5-цилиндрового бензинового двигателья затягиваются динамометрическим ключом в последовательности от 1 до 12 в два приема: вначале с усилием 40 Н·м, а затем – 60 Н·м. После этого производится дополнительная затяжка жестким ключом: 1/2 оборота (180°). Допускается дополнительная затяжка 90° х 2 (за 2 раза по 90° каждый). При затяжке болтов головки блока цилиндров оценивать угол поворота по расположению рукоятки ключа относительно двигателя: 1/4 оборота (90°) соответствует положению рукоятки поперек двигателя.

  1. Основные неисправности грм

В процессе эксплуатации автомобиля в газораспределительном механизме могут возникнуть такие неисправности, как плохое прилегание клапана к гнезду, неполное открытие клапана, растяжение звеньев приводной цепи.

Признаками плохого прилегания клапана к седлу является уменьшение компрессии, периодические хлопки во впускном или выпускном трубопроводах, падение мощности двигателя. Причиной плохого прилегания клапанов может быть отложение нагара на клапанах и гнездах, образование раковин на рабочих поверхностях, коробление головки клапана, поломка клапанных пружин, заедание стержней клапанов в направляющих втулках, отсутствие зазора между стержнем клапана и носком коромысла.

Признаком неполного открытия клапана служат стуки в двигателе и падение мощности. Причиной этой неисправности является большой зазор между стержнем клапана и носком коромысла. Образование такого зазора может привести к обрыву головки клапана.

К неисправностям газораспределительного механизма следует отнести также износ шестерен распределительного вала, увеличение продольного смещения распределительного вала и зависание клапанов вследствие отложения на их стержнях смолистых веществ.

Выявленные неисправности необходимо устранять следующим образом: нагар удалить, поломанную пружину заменить, засмоленные стержни клапанов промыть бензином. Нарушенный зазор между стержнем клапана и носком коромысла восстанавливают регулировкой. При значительном износе деталей газораспределительного механизма двигатель ремонтируют.

Растяжение приводной цепи приводит к нарушению фаз газораспределения, вследствие чего затрудняется пуск двигателя и уменьшается его мощность.

Увеличение зазора вызывает стук клапанов, а уменьшение — вспышки в карбюраторе или хлопки в глушителе. При большом зазоре уменьшается величина опускания клапана и сокращается продолжительность его открытия, в результате чего ухудшается наполнение цилиндра горючей смесью и удаление из него продуктов сгорания, а мощность двигателя снижается.

 Зазоры, мм, в клапанном механизме при холодном двигателе

 Марка автомобиля

Впускной клапан 

 Выпускной клапан

КамАЗ

0,3

0,4

ВАЗ

0,15

0,15

Зазоры между носками коромысел и торцами стержней клапанов проверяют щупами. Щуп толщиной 0,3 мм для впускных и 0,4 мм для выпускных клапанов должен входить в зазор с усилием, а щупы толщиной соответственно 0,25 и 0,35 мм — свободно (передние клапаны правого ряда цилиндров — впускные, левого ряда — выпускные). Для регулировки зазора ослабляют гайку регулировочного винта и, удерживая в зазоре щуп нужной толщины, устанавливают требуемый зазор вращением винта отверткой. Затем, придерживая винт отверткой, затягивают гайку и еще раз проверяют зазор щупом. Более удобной и производительной является регулировка зазоров клапанов с помощью приспособления И801.14.00 (рис.3). 

Рис. 3. Приспособление И801.14.000 для регулировки зазоров клапанов:

1 — торцовый ключ; 2 — отвертка; 3 — регулировочный винт; 4 — контргайка  Качество регулировки зазоров клапанов проверяют на работающем двигателе по отсутствию стуков в клапанном механизме. По окончании работ устанавливают на места и закрепляют крышку люка картера сцепления и крышки головок цилиндров.

Ответить на вопросы письменно: 

1. Основные неисправности КШМ? 

2. Способы устранения неисправностей КШМ? 

3. Основные неисправности ГРМ? 

4. Способы устранения неисправностей ГРМ? 



 30.09.2022

Группа 303

Предмет: Технология газовой сварки 

Тема урока: Сварочная проволока и флюсы при газовой сварки 

Цель урока: изучить данную тему, составить конспект урока. 

В процессе газовой сварки все металлы и их сплавы, соединяясь с кислородом окружающего воздуха и кислородом сварочного пламени, образуют оксиды, которые имеют более высокую температуру плавления, чем сам металл. Для защиты расплавленного металла от окисления и удаления образовавшихся при сварке оксидов применяют сварочные порошки или пасты, называемые флюсами.

Флюс для газовой сварки
вещества, которые вводят в сварочную ванну для раскисления расплавленного металла и удаления из него образовавшихся оксидов и неметаллических включений.

При газовой сварке флюс применяется в виде порошков, паст или легкоиспаряющейся жидкости. В первых двух случаях он подается в зону сварки вручную, т. е. наносится на кромки свариваемого металла и на присадочные прутки, либо вносится в ванну в процессе сварки периодическим погружением присадочного прутка в сосуд с флюсом.

В случае применения флюса в виде паров (например, флюса БМ-1 при сварке меди, медных и никелевых сплавов) он подается в пламя горелки автоматически в строго дозированном количестве специальным прибором.

В процессе газовой сварки флюсы, вводимые в сварочную ванну, расплавляются и образуются с окислами легкоплавкие шлаки, всплывающие на поверхность сварочной ванны. При этом пленка покрывает расплавленный металл шва, предохраняя его от дальнейшего воздействия атмосферного воздуха. Необходимость применения флюсов при сварке металлов и сплавов, высоколегированных сталей и чугуна вызывается тем, что при нагревании металлов до высокой температуры на их поверхности образуется оксидная пленка, которая при расплавлении переходит в сварочную ванну, препятствуя при этом надежному сплавлению основного и присадочного металла. При сварке углеродистых сталей флюсы, как правило, не применяют.

К сварочным флюсам, применяемым при газовой сварке и пайке, предъявляют следующие требования:

  • флюс должен быть более легкоплавким, чем основной и присадочный металлы;
  • расплавленный флюс должен хорошо растекаться по нагретой поверхности металла, т. е. обладать достаточной жидкотекучестью;
  • расплавленный флюс не должен выделять ядовитых газов в процессе сварки и вызывать коррозию сварочного соединения;
  • флюс должен обладать высокой реакционной способностью, активно раскислять окислы, переводить их в более легкоплавкие химические соединения или удалять их, растворяя так, чтобы процесс растворения заканчивался до затвердевания сварочной ванны;
  • образовавшийся в процессе сварки шлак должен хорошо защищать металл от окисления кислородом и азотом воздуха;
  • шлаки должны хорошо отделяться от шва после сварки;
  • плотность флюса должна быть меньше плотности основного и присадочного металла, чтобы в процессе сварки образуемый флюсом шлак всплывал на поверхность сварочной ванны, а не оставался в металле шва;
  • флюс должен сохранять свои свойства на протяжении всего процесса сварки:
  • флюс должен быть дешевым и недефицитным.

В зависимости от вида свариваемого металла в сварочной ванне образуются основные и кислые оксиды. Если образуются основные оксиды, то применяют кислый флюс, если кислые - основной флюс. В обоих случаях реакция протекает по следующей схеме:

кислотный оксид + основной оксид = соль.

В качестве флюсов используют буру, борную кислоту, оксиды и соли бария, калия, лития, натрия, фтора и др. Состав флюса выбирают в зависимости от свойств свариваемого металла. При сварке чугуна в сварочной ванне образуется кислый оксид SiO2, для растворения его вводят сильные основные оксиды - К2O, Na2O. В качестве основных флюсов применяют углекислый натрий Na2CO3, углекислый калий К2СO3 и буру Na2B4O7.

При газовой сварке меди, латуни образуются основные оксиды (Cu2O, ZnO, FeO и др.), поэтому для растворения их вводят кислые флюсы. Они обычно представляют собой соединения бора.

При кислородной резке нержавеющих сталей, чугуна и цветных металлов флюс вводится в струю режущего кислорода. Основой флюса для кислородной резки служит железный порошок.


среда, 28 сентября 2022 г.

 29.09.2022

Группа 506

Предмет: Устройство автомобиля

Тема урока : Система смазки ДВС 

Цель урока : изучить данную тему, ответить на вопросы письменно. 

Устройство системы смазки автомобильного двигателя

Система смазки двигателя

Главной задачей системы смазки является обеспечение масляной пленки на соприкасающихся подвижных деталях автомобильного двигателя. Это позволяет снизить потери мощности и износ силового агрегата. Помимо этого, масло, подаваемое системой, используется в гидрокомпенсаторах, гидронатяжителях и в механизмах регулирования фаз газораспределения. В общем устройстве автомобиля смазочная система интегрирована в конструкцию двигателя и состоит из следующих элементов:

Заливная горловина – через нее выполняется заливка или доливка масла.

Поддон картера – представляет собой нижнюю часть корпуса двигателя, наполненную маслом. Для правильной работы двигателя количество рабочей жидкости в поддоне должно быть на определенном уровне, что измеряется при помощи различных датчиков и приспособлений (щупа). В поддоне скапливаются не только излишки масла, стекающие из механизмов двигателя, но и загрязнения, образующиеся в процессе работы. Также на поддоне расположено сливное отверстие и пробка в виде болта с шайбой. При замене масла пробку необходимо заменить вместе с шайбой.

Маслозаборник – представляет собой конструкцию из патрубка, идущего от поддона к насосу, и фильтра грубой очистки.

Масляный насос – всасывает смазку при помощи маслозаборника из поддона и подает ее в систему. Он запускается и отключается одновременно с двигателем. В качестве привода может выступать коленвал, распредвал или вспомогательный приводной вал. Как правило, в автомобилях для перекачки масла применяются два типа насосов: шестеренчатые (более популярные) и роторные.

Масляный фильтр. Устанавливается на входе в насос и предназначен для очистки рабочей жидкости от стружки и нагара. Бывают двух типов – разборные (при загрязнении фильтра меняется лишь фильтрующий элемент) и неразборные (меняется весь фильтр).

Масляный радиатор. Поскольку рабочая жидкость в системе смазки также осуществляет охлаждение, для снижения ее собственной температуры она проходит через радиатор. Последний, в свою очередь, охлаждается жидкостью системы охлаждения.

Магистрали и каналы – по ним движется масло от одного узла к другому.

Масляные форсунки. Используются для подачи масла на стенки цилиндров и поршни.

Датчики давления, температуры и уровня масла – подают сигналы на электронный блок управления двигателем, передавая данные о состоянии системы смазки и режиме работы двигателя.

Клапаны (перепускные и редукционные). Позволяют автоматизировать контроль давления масла и управлять его подачей в систему. Такие клапаны монтируются вблизи ведущих элементов системы (насоса, основных узлов двигателя, фильтра).

Устройство системы смазки автомобильного двигателя

Система смазки двигателя

Главной задачей системы смазки является обеспечение масляной пленки на соприкасающихся подвижных деталях автомобильного двигателя. Это позволяет снизить потери мощности и износ силового агрегата. Помимо этого, масло, подаваемое системой, используется в гидрокомпенсаторах, гидронатяжителях и в механизмах регулирования фаз газораспределения. В общем устройстве автомобиля смазочная система интегрирована в конструкцию двигателя и состоит из следующих элементов:

Заливная горловина – через нее выполняется заливка или доливка масла.

Поддон картера – представляет собой нижнюю часть корпуса двигателя, наполненную маслом. Для правильной работы двигателя количество рабочей жидкости в поддоне должно быть на определенном уровне, что измеряется при помощи различных датчиков и приспособлений (щупа). В поддоне скапливаются не только излишки масла, стекающие из механизмов двигателя, но и загрязнения, образующиеся в процессе работы. Также на поддоне расположено сливное отверстие и пробка в виде болта с шайбой. При замене масла пробку необходимо заменить вместе с шайбой.

Маслозаборник – представляет собой конструкцию из патрубка, идущего от поддона к насосу, и фильтра грубой очистки.

Масляный насос – всасывает смазку при помощи маслозаборника из поддона и подает ее в систему. Он запускается и отключается одновременно с двигателем. В качестве привода может выступать коленвал, распредвал или вспомогательный приводной вал. Как правило, в автомобилях для перекачки масла применяются два типа насосов: шестеренчатые (более популярные) и роторные.

Масляный фильтр. Устанавливается на входе в насос и предназначен для очистки рабочей жидкости от стружки и нагара. Бывают двух типов – разборные (при загрязнении фильтра меняется лишь фильтрующий элемент) и неразборные (меняется весь фильтр).

Масляный радиатор. Поскольку рабочая жидкость в системе смазки также осуществляет охлаждение, для снижения ее собственной температуры она проходит через радиатор. Последний, в свою очередь, охлаждается жидкостью системы охлаждения.

Магистрали и каналы – по ним движется масло от одного узла к другому.

Масляные форсунки. Используются для подачи масла на стенки цилиндров и поршни.

Датчики давления, температуры и уровня масла – подают сигналы на электронный блок управления двигателем, передавая данные о состоянии системы смазки и режиме работы двигателя.

Клапаны (перепускные и редукционные). Позволяют автоматизировать контроль давления масла и управлять его подачей в систему. Такие клапаны монтируются вблизи ведущих элементов системы (насоса, основных узлов двигателя, фильтра).

Ответить на вопросы письменно: 

! Назначение системы смазки двигателя ?  

2. Устройство системы смазки двигателя? 

3. Принцип работы системы смазки двигателя ? 


 29.09.2022

Группа 510

Предмет:: Слесарное дело Т,О и ремонт С/Х машин

Тема урока : Работы выполняемые при Т,О 1. - гусеничных тракторов 

Цель урока : изучить данную тему, составить краткий конспект. 

Техническое обслуживание (ТО) необходимо для поддержания техники в исправном рабочем состоянии, обеспечения безопасности и длительности ресурса в процессе эксплуатации. Система технического обслуживания и ремонта машин в сельском хозяйстве представляет собой совокупность технических средств, документации и исполнителей, необходимых для поддержания и восстановления качества эксплуатируемых машин

Несоблюдение установленной периодичности и низкое качество ТО значительно снижают ресурс машины, приводят к возрастанию числа отказов, падению мощности дизеля и увеличению затрат на эксплуатацию трактора

Тракторы проходят несколько ТО, включая ежемесячные и ежедневные проверки.

 Подготовка к эксплуатационной обкатке

Техническое обслуживание тракторов МТЗ  (перед запуском в «строй» с конвейера или после длительного хранения) проводится следующим образом:

 Выполняют визуальный осмотр и очистку машины от запыления и грязи.

Удаляют консервационное смазочное покрытие.

 Оценивают состояние и подготавливают к запуску аккумуляторы.

Техническое обслуживание (ТО) необходимо для поддержания техники в исправном рабочем состоянии, обеспечения безопасности и длительности ресурса в процессе эксплуатации. Система технического обслуживания и ремонта машин в сельском хозяйстве представляет собой совокупность технических средств, документации и исполнителей, необходимых для поддержания и восстановления качества эксплуатируемых машин

Несоблюдение установленной периодичности и низкое качество ТО значительно снижают ресурс машины, приводят к возрастанию числа отказов, падению мощности дизеля и увеличению затрат на эксплуатацию трактора

Тракторы проходят несколько ТО, включая ежемесячные и ежедневные проверки.

 Подготовка к эксплуатационной обкатке

Техническое обслуживание тракторов МТЗ  (перед запуском в «строй» с конвейера или после длительного хранения) проводится следующим образом:

 Выполняют визуальный осмотр и очистку машины от запыления и грязи.

Удаляют консервационное смазочное покрытие.

 Оценивают состояние и подготавливают к запуску аккумуляторы.

вторник, 20 сентября 2022 г.

21.09.2022

Группа 401

Предмет: Технология механизированных работ в С/Х

Тема урока:  Устройство зерновой сеялки 

Цель урока: изучить данную тему, составить конспект урока.

 Для сева колосовых на зерно используют в большей степени зерновые сеялки СЗ-3,6А, СЗ-5,4, СЗ-10,8 и их модификации.

Зернотуковая сеялка СЗ-3,6А (рис.5) состоит из двух ящиков 1, двух секций высевающих аппаратов 17, закрепленных внизу к днищу каждого ящика, двух секций туковысевающих аппаратов 2, установленных в задней стенке тукового отделения ящика, резиновых гофрированных семяпроводов 11, дисковых сошников 7, 12, загортачей 8, двух опорно-приводных колес 3, зубчато-цепного механизма привода высевающих аппаратов 4, механизма подъема сошников, гидроцилиндра 16 и прицепного устройства 15. В ящике установлена перегородка, которая делит ящик на два отделения: переднее – для семян и заднее – для удобрений. В перегородке есть окна, которые открываются и при необходимости оба отделения ящика можно использовать для засыпки семян. Сверху ящики закрываются двумя крышками.

Рис. 5. Зернотуковая сеялка СЗ-3,6А

а- общий вид; б- функциональная схема; 1- зернотуковый ящик; 2- высевной аппарат для туков; 3- опорно-приводное колесо; 4- коробка передач; 5 - подножная доска; 6 и 14- подставки; 7- сошник задний; 8- загортач; 9- отделение ящика для удобрений; 10- лоток; 11- семяпроводы; 12- передний сошник; 13- рама; 15- прицепное устройство; 16- гидроцилиндр; 17- семявысевающий аппарат

и семян. Каждый ящик закрывается

Рабочий процесс. Во время работы сеялки от опорно-приводных колес 3 приводятся во вращение катушки для высева семян 17 и удобрений 2. Они захватывают семена и удобрения и подают их в семяпроводы 11. После этого семена и удобрения попадают в сошники 7 и 12 и ложатся на дно борозды. Загортачи 8 засыпают семена и удобрения на дне борозды. Рабочая ширина захвата сеялки 3,6м. Глубина хода сошников 4-8см. Емкость зернового отделения ящика 453 дм3, а тукового 212 дм3. Рабочая скорость до 12 км/час. Производительность 3,6 га/час.

Рабочими органами зерновых сеялок являются высевающие аппараты, сошники и загортачи.

Высевающие аппараты – это дозаторы, которые отбирают часть семян из ящика сеялки и направляют их в сошники. Их задача –создать равномерный и беспрерывный поток семян или удобрений, обеспечить устойчивость их высева в независимости от скорости движения посевного агрегата и рельефа почвы. По принципу действия дозаторы зерновых сеялок могут быть механическими, пневматическими и электромагнитными.

Механические высевающие аппараты подразделяются на катушечные, катушечно-штифтовые и вибрационные. Основные из них – катушечного типа. Они являются универсальными дозаторами при высеве зерновых культур. На современных сеялках катушечные аппараты устанавливают с нижним высевом, а для крупносемянных культур (горох, фасоль, бобы) – с верхним высевом для уменьшения степени механического травмирования семян.

К основным частям катушечного высевающего аппарата (рис.6) относятся: семенная коробка, катушка 1, муфта 9, вал 4 и подпружиненный клапан 6.

Рис. 6. Высевающие аппараты катушечного типа

а, б- рядовых сеялок; в- травяных сеялок; г, д- овощных сеялок. 10 и 24- катушки; 2- розетка;19 - корпус; 4, 11 и 15-валы; 5- ребро муфты; 6, 12, 16- клапаны; 7- регулировочный болт; 8- ось; 9- муфта; 13- заслонка; 14- неподвижное дно; 17 и 22- пружины; 18- ворошилка; 20- диск; 21- окно; 23- болт

Семенная коробка крепится к днищу зернотукового ящика. Катушка закреплена на валу 4 и вращается при работе вместе с валом. В нижней части коробки на оси установлен вогнутый в середину криволинейный клапан 6 для опорожнения семенного ящика.

Рабочий процесс. Семена из зернового ящика высыпаются в корпус 3 высевающего аппарата. Во время вращения катушки семена заполняют ее желобки и перемещаются к семяпроводам. Количество высевающих семян зависит от длины рабочей части катушки и скорости ее вращения, которая регулируется с помощью смены передаточного отношения зубчатой и цепной передачи. Это достигается перемещением шестерен в редукторе или сменой звездочек в цепной передаче. Длину рабочей части катушки устанавливают рычагом регулятора высева путем перемещения его левее или правее вала с катушками. Катушки высевающих аппаратов сеялки должны иметь одинаковую рабочую длину. Ее проверяют при помощи шаблонов, а регулируют компенсационными шайбами на валу аппаратов и перемещением семенной коробки относительно дна ящика. Отклонение длины рабочей части катушки от заданной должно составлять + 1см. Катушки работают без повреждения семян при длине ее рабочей части не менее двух максимальных размеров семени. В зависимости от размера семени устанавливается зазор между клапаном и нижним ребром муфты высевающего аппарата: 0-2 мм для зерновых колосовых и 8-10 мм для крупносемянных бобовых культур.

Катушечно-штифтовые аппараты (рис.6б) также могут ставиться на зерновые сеялки. У них норма высева регулируется частотой вращения катушки и заслонкой 13. Для высева мелкосемянных культур на вал аппаратов устанавливают сменные катушки с зубчатой поверхностью, а для крупных семян в комплект входят катушки со специальными буртиками с ребрами.

На зерновых сеялках «Клен» устанавливается высевающая система с электроприводом и электронным приводом из кабины. Она состоит из дозатора, пульта управления, мультиплексора и датчика скорости движения. У дозатора имеется электропривод с микропроцессорным управлением.

На современных широкозахватных сеялках и комбинированных агрегатах устанавливают пневмомеханические высевающие аппараты с централизованным дозированием семян. Подачу семян из бункера обеспечивает дозатор катушечного типа, а транспортировка семян по пневмоприводам и семяпроводам осуществляется воздушным потоком.

Сошники являются вторым основным рабочим органом зерновых сеялок. Они служат для создания в почве бороздки и укладки на ее дно семян и удобрений. От качества работы сошников в значительной мере зависит появление равномерных дружных всходов и развитие растений. Сошники должны создавать одинаковые борозды заданной глубины, не выносить нижние слои почвы на поверхность поля, чтобы не было потери влаги, уплотнять дно борозды для обновления капилляров в почве, обеспечивать равномерное распределение семян в борозде, присыпание их влажным слоем почвы. Наиболее распространенным типом сошников является двухдисковый однорядковый (обычный) сошник (рис.7) и килеподобный сошник (рис.8).

Рис.7.Дисковые сошники

а– двухдисковый однострочный; б–двухдисковый двухстрочный; в– двухдисковый однострочный с ребордами; г– двухдисковый двурядковый с ребордами; д– однодисковый; е– двухдисковый с дисковым ножом.; 1, 11, 13, 17, 24– диски; 2– поводок; 3– штанга с пружиной; 4– корпус сошника; 5 и 12– семяпроводы; 6подшипник; 7 и 10 – оси дисков; 8крышка; 9– распределитель; 14, 25 и 28 –кронштейны; 15 и 19 – реборды; 16, 20 и 23– чистики; 18 и 21лейки; 22– ступица; 26– дисковый нож; 27– подвеска; 29– сошник дисковый.

Двухдисковый однорядковый (обычный) сошник состоит из двух плоских дисков 1, корпуса 4 с раструбом и поводком 2. К дискам прикрепляютсяфигурные крышки 8, в которые вставлены оси 7 с подшипниками 6. Кромка дисков разрезает почву и поэтому заостренная.

В передней части диски сходятся, образуя клины с углом 10º. Зазоры между ними должны быть не меньше 1,5 мм. В задней части корпуса сошника закреплены два чистика и направляющая пластина для направления семени на дно борозды. Между корпусом и дисками установлены резиновые уплотнители. При движении сошника диски 1 вращаются, разрезают почву и смещают ее на обе стороны, создавая борозду. Семена и минеральные удобрения по направляющей пластине попадают на дно борозды. Стенки борозды осыпаются и частично присыпают семена и удобрения почвой. Внутренние поверхности дисков очищаются чистиками.

Глубина хода дискового сошника регулируется винтом регулятора глубины сеялки, а устойчивость хода – сжиманием пружины штанги 3 сошника.

Килеподобный сошник (рис.8) имеет в передней части заостренную пластину (киль) 6, которая перемещает частички почвы сверху вниз и уплотняет дно борозды. Глубина хода сошника регулируется давлением пружины или тягой.

Рис.8. Сошники

а– анкерный; б– килеподобный сеялки СЗТ-3,6А; в– килеподобный сеялки СЗ-3,6А; г– килеподобный льняной сеялки; д– полозовидный комбинируемый; е и є– стерневых сеялок; ж– трубчатый; 1– киль; 2 и 15– кронштейны; 3– скоба; 4 и 23– трубки; 5, 8– лейки; 6- килеподобные лемеха; 7– полоз; 9- пятка; 10– болт; 11 и 17– пружины; 12 и 19–стойки; 13 и 20– лапы; 16– тяга; 18– семяпровод; 21 и 22– носок.

Сошники сеялок должны обеспечивать заделку минеральных удобрений на 2-3 см глубже семян и смещение вбок от рядка на 3-5 см.

Глубина хода сошников регулируется винтом регулятора глубины, а стойкость хода сошников обеспечивается сжатием пружин натяжных штанг.

Рабочие органы для загортания борозд (загортачи) являются третьим основным органом зерновой сеялки (рис. 9).

Рис.9. Рабочие органы для загортания борозд

а и б- пальцевые загортачи; в - шлейф кольцевой; г - шлейф цепной; д- боронка кольцевая; е- прикатывающий каток; є- каток с пальцевыми загортачами; ж- пальцевые загортачи с катком с- каток клиновидный; и- катки конические; л- дисковые загортачи; 1 и 10- зубы; 2- стояк; 3- скоба; 4- наральник; 5- сошник; 6, 8 и 9- кольца; 12- цепи; 11, 13, 16-обрезиненные катки; 14 и 15- полки; 17- клинообразные катки; 18, 19- катки конусообразные; 20- сферический диск; 21- полуось

Рабочие органы предназначены для полного загортания семян и борозд, выравнивания поверхности поля.

Пальцевые загортачи являются основными для зерновых сеялок. Они изготовлены в виде заостренных зубьев 1 на пружинных стойках 2 или в виде прутиков цилиндрического или овального сечения.

На сеялке СЗ-3,6А устанавливают пробоотборник семян, унифицированную систему контроля технологических параметров (УСК) и приспособление для перекрытия семявысевающих аппаратов.

Пробоотборник семян (рис. 10) установлен на зерновой сеялке СЗ – 3,6А под тремя правыми крайними высевающими аппаратами. Он состоит из лотка 1, крышки 2, трех леек 5 и пружины 3. Нижняя часть лотка прикреплена к семяпроводам. При взятии проб лоток 1 опускается и семена из лейки попадают на его дно. В рабочем положении сеялки крышка 2 поднята, и лейки 5 заходят в лоток. Семена из высевающих аппаратов попадают в лейки, а оттуда – в семяпроводы и сошники.

Рис. 10. Пробоотборник семян

1- лоток; 2- крышка; 3- пружина; 4- скоба; 5- лейка; 6 и 8- шплинт; 7- крючок; 9- трубка

Унифицированная система контроля призвана обеспечить групповой контроль за высевом семян и уровнем семян и удобрений в зернотуковом ящике. Она состоит из датчиков высева семян, датчика уровня семян и удобрений в ящиках, кабеля и пульта управления. Работает от напряжения 12В. При работе сеялки и подаче посевного материала к семяпроводам (семена проходят между фотоприемником и лампой) информационный сигнал на пульт не приходит. Если высев семян приостанавливается, то через полторы секунды на пульте включается звуковой сигнал, и на световом индикаторе загорается соответствующая лампочка. При снижении уровня посевного материала ниже места установки датчика в зернотуковом ящике появляется свободное пространство (незаполненное зерном или туками) между лампой и фоторезистером, и на пульте у тракториста загорается световой индикатор

(Уров. СУ) и подаются одиночные звуковые сигналы.

 21.09.2022

Группа 501 

Предмет: Технология механизированных работ в С/Х

Тема урока:  Требования к МТА 

Цель урока: изучить данную тему, составить конспект урока.

Чтобы обеспечить производительность труда и экономическую эффективность сельскохозяйственных машин и тракторов, необходимо выполнять в лучшие агротехнические сроки, тщательно отрегулировать работу машин, правильно комплектовать Машинотракторные агрегаты.

Состав МТА определяют следующим образом: для заданных условий и размеров поля, рельефа местности, аэрофона с учетом агротехнических требований к выполнению операции выбирают трактор, сцепку.

Тяговое сопротивление машин должно соответствовать тяговому усилию трактора, развивающего в данных полевых условиях.

Машинотракторному агрегату необходимо иметь такую рабочую скорость, при котором будет обеспечиваться полное использование мощности двигателя и высокое качество работы. Высокая производительность должна быть обеспечена при минимальных затратах.

Машины входящие в агрегат, должны быть исправны и удобны в обслуживании.

1. Каждый трактор должен быть технически исправен, полностью укомплектован в соответствии с руководством.

2. При техосмотре, прежде всего, проверяют рулевое управление, ходовую часть и тормоза.

3. Все части рулевого управления должны быть надежно закреплены, а крепежные детали зафиксированы.

4. Тормоза в работе должны быть надежные в соответствии с правилами ПДД.

5. Все передачи должны легко включаться и выключаться.

6. Перед началом работы с прицепами и навесными орудиями необходимо проверить состояние прицепного устройства и навесной системы, все детали должны быть исправны, соединения не должны самопроизвольно рассоединяться.

7. Перед работой трактор смазывают, заправляют топливом и водой, зимой утепляют.

8. Машинно-тракторный агрегат должен обеспечить:

ь Соблюдение требований агротехники по качеству работы;

ь Рациональное использование энергетических и кинематических показателей трактора и с/х машин, высокую производительность и экономичность работы агрегата;

ь Удобства и безопасность обслуживающего персонала при управлении технологическом и техническом обслуживании;

ь Достаточную маневренность и проходимость агрегата при заданных условиях.

На практике чаще всего агрегат составляют применительно к трактору, предназначенному для выполнения заданной работы. Затем устанавливают режим работы агрегата, определяют основную и резервную передачи трактора.

Агротехнические требования для выполнения посева зерновых колосовых

Посев должен производиться в сжатые агротехнические сроки семенами агротехнические сроки. Разрыв между предпосевной обработкой и посевом не должен быть более суток. Допускается отклонение от заданной нормы высева семян более 3% а минеральных удобрений 10%. Неравномерность высева семян отдельными высевающими аппаратами не должна превышать 4%. Глубина заделки должна составлять 3-6 см. Отклонение ширины стоковых междурядий смежных сеялок не должна превышать 2 см, смежных проходов агрегатов 5 см.

 21.09.2022

Группа 506

Предмет: Устройство автомобиля 

Тема урока: Назначение и устройство системы охлаждения 

Цель урока :изучить данную тему, ответить на вопросы письменно. 

Система охлаждения предназначена для охлаждения деталей двигателя, нагреваемых в результате его работы. На современных автомобилях система охлаждения, помимо основной функции, выполняет ряд других функций, в том числе:

В зависимости от способа охлаждения различают следующие виды систем охлаждения: жидкостная (закрытого типа), воздушная (открытого типа) и комбинированная. В системе жидкостного охлаждения тепло от нагретых частей двигателя отводится потоком жидкости. Воздушная система для охлаждения использует поток воздуха. Комбинированная система объединяет жидкостную и воздушную системы.

Система охлаждения

На автомобилях наибольшее распространение получили система жидкостного охлаждения. Данная система обеспечивает равномерное и эффективное охлаждение, а также имеет меньший уровень шума. Поэтому, устройство и принцип действия системы охлаждения рассмотрены на примере системы жидкостного охлаждения.

Конструкция системы охлаждения бензинового и дизельного двигателей подобны. Система охлаждения двигателя включает множество элементов, среди которых радиатор охлаждающей жидкости, масляный радиатор, теплообменник отопителя, вентилятор радиатора, центробежный насос, а также расширительный бачок и термостат. В схему системы охлаждения включена «рубашка охлаждения» двигателя. Для регулирования работы системы используются элементы управления.

Схема системы охлаждения

Радиатор предназначен для охлаждения нагретой охлаждающей жидкости потоком воздуха. Для увеличения теплоотдачи радиатор имеет специальное трубчатое устройство.

Наряду с основным радиатором в системе охлаждения могут устанавливаться масляный радиатор и радиатор системы рециркуляции отработавших газов. Масляный радиатор служит для охлаждения масла в системе смазки.

Радиатор системы рециркуляции отработавших газов охлаждает отработавшие газы, чем достигается снижение температуры сгорания топливно-воздушной смеси и образования оксидов азота. Работу радиатора отработавших газов обеспечивает дополнительный насос циркуляции охлаждающей жидкости, включенный в систему охлаждения.

Теплообменник отопителя выполняет функцию, противоположную радиатору системы охлаждения. Теплообменник нагревает, проходящий через него, воздух. Для эффективной работы теплообменник отопителя устанавливается непосредственно у выхода нагретой охлаждающей жидкости из двигателя.

Для компенсации изменения объема охлаждающей жидкости вследствие температуры в системе устанавливается расширительный бачок. Заполнение системы охлаждающей жидкостью обычно осуществляется через расширительный бачок.

Циркуляция охлаждающей жидкости в системе обеспечивается центробежным насосом. В обиходе центробежный насос называют помпойЦентробежный насос может иметь различный привод: шестеренный, ременной и др. На некоторых двигателях, оборудованных турбонаддувом, для охлаждения наддувочного воздуха и турбокомпрессора устанавливается дополнительный насос циркуляции охлаждающей жидкости, подключаемый блоком управления двигателем.

Термостат предназначен для регулировки количества охлаждающей жидкости, проходящей через радиатор, чем обеспечивается оптимальный температурный режим в системе. Термостат устанавливается в патрубке между радиатором и «рубашкой охлаждения» двигателя.

На мощных двигателях устанавливается термостат с электрическим подогревом, который обеспечивает двухступенчатое регулирование температуры охлаждающей жидкости. Для этого в конструкции термостата предусмотрено три рабочих положения: закрытое, частично открытое и полностью открытое. При полной нагрузке на двигатель с помощью электрического подогрева термостата производится его полное открытие. При этом температура охлаждающей жидкости снижается до 90°С, уменьшается склонность двигателя к детонации. В остальных случаях температура охлаждающей жидкости поддерживается в пределах 105°С.

Вентилятор радиатора служит для повышения интенсивности охлаждения жидкости в радиаторе. Вентилятор может иметь различный привод:

  • механический (постоянное соединение с коленчатым валом двигателя);
  • электрический (управляемый электродвигатель);
  • гидравлический (гидромуфта).

Наибольшее распространение получил электрический привод вентилятора, обеспечивающий широкие возможности для регулирования.

Типовыми элементами управления системы охлаждения являются датчик температуры охлаждающей жидкости, электронный блок управления и различные исполнительные устройства.

Датчик температуры охлаждающей жидкости фиксирует значение контролируемого параметра и преобразует его в электрический сигнал. Для расширения функций системы охлаждения (охлаждения отработавших газов в системе рециркуляции отработавших газов, регулирования работы вентилятора и др.) на выходе радиатора устанавливается дополнительный датчик температуры охлаждающей жидкости.

Сигналы от датчика принимает электронный блок управления и преобразует их в управляющие воздействия на исполнительные устройства. Используется, как правило, блок управления двигателем с устанавленным соответствующим программным обеспечением.

В работе системы управления могут использоваться следующие исполнительные устройства: нагреватель термостата, реле дополнительного насоса охлаждающей жидкости, блок управления вентилятором радиатора, реле охлаждения двигателя после остановки.

Принцип работы системы охлаждения

Работу системы охлаждения обеспечивает система управления двигателем. В современных двигателях алгоритм работы реализован на основе математической модели, которая учитывает различные параметры (температуру охлаждающей жидкости, температуру масла, наружную температуру и др.) и задает оптимальные условия включения и время работы конструктивных элементов.

Охлаждающая жидкость в системе имеет принудительную циркуляцию, которую обеспечивает центробежный насос. Движение жидкости осуществляется через «рубашку охлаждения» двигателя. При этом происходит охлаждение двигателя и нагрев охлаждающей жидкости. Направление движения жидкости в "рубашке охлаждения" может быть продольным (от первого цилиндра к последнему) или поперечным (от выпускного коллектора к впускному).

В зависимости от температуры жидкость циркулирует по малому или большому кругу. При запуске двигателя сам двигатель и охлаждающая жидкость в нем холодные. Для ускорения прогрева двигателя охлаждающая жидкость движется по малому кругу, минуя радиатор. Термостат при этом закрыт.

По мере нагрева охлаждающей жидкости термостат открывается, и охлаждающая жидкость движется по большому кругу – через радиатор. Нагретая жидкость проходит через радиатор, где охлаждается встречным потоком воздуха. При необходимости жидкость охлаждается потоком воздуха от вентилятора.

После охлаждения жидкость снова поступает в «рубашку охлаждения» двигателя. В ходе работы двигателя цикл движения охлаждающей жидкости многократно повторяется.

На автомобилях c турбонаддувом может применяться двухконтурная система охлаждения, в которой один контур отвечает за охлаждение двигателя, другой - за охлаждение наддувочного воздуха.


Ответить на вопросы : 

! Назначение системы охлаждения ? 

2. Устройство системы охлаждения? 

3. Принцип работы системы охлаждения? 

понедельник, 19 сентября 2022 г.

 20.09.2022

Группа 301

Предмет: Эксплуатация Т.О и ремонт С/Х машин 

Тема урока: Тормозная система тракторов 

Цель урока: изучить данную тему, составить краткий конспект по вопросам. 

ДОМАШНЯЯ РАБОТА

Прочитать текст и ответить в тетради на следующие вопросы:

Назначение тормозной системы трактора

Виды тормозных механизмов применяемых на тракторах.

Типы тормозных систем тракторов

Описать принцип работы тормозов

 

Для снижения скорости движения, остановки и удержания в неподвижном состоянии тракторы оборудуют тормозной системой. Различают тормозные системы следующих видов: стояночную, ко­торая служит для удержания машины на склоне, и рабочую, необ­ходимую для снижения скорости движения машины и ее полной остановки с необходимой эффективностью.

Тормозная система состоит из тормозного механизма и его при­вода.

Тормозной механизм.Он служит для создания искусственного со­противления движению трактора. Наибольшее распространение по­лучили фрикционные тормоза, принцип действия которых осно­ван на использовании сил трения между неподвижными и враща­ющимися деталями. Фрикционные тормоза могут быть барабанными, ленточными и дисковыми. В барабанном тормозе силы трения со­здаются на внутренней, цилиндрической поверхности вращения, в ленточном — на наружной, а в дисковом — на боковых поверхно­стях вращающегося диска.

По месту установки различают тормоза колесные и централь­ные (трансмиссионные). Первые действуют на ступицу колеса, а вторые - на один из валов трансмиссии. Колесные тормоза исполь­зуют в рабочей тормозной системе, центральные — в стояночной.

Стояночный тормоз дискового типа расположен с пра­вой стороны заднего моста рядом с основным (рабочим) тормозом. Его приводят в действие рычагом 1 (рис. 100), установленным в кабине трактора. Тормоз сухой, дисковый, состоит из кожуха 7, двух стальных соединительных 10 и двух чугунных нажимных дисков, тяг и рычагов. Кожух привернут болтами к корпусу заднего моста. Соединительные диски имеют внутри шлицевые отверстия, которыми они установлены на шлицы хвостовика ведущей шестерни конечной передачи.

Соединительные диски снабжены с обеих сторон фрикционными накладками. Внутри нажимных дисков, соединенных пружинами 15, уложены пять шариков 14, которые входят в углубления дисков.

http://mybiblioteka.su/mylektsiiru/baza9/2292993197410.files/image001.png

Если переместить рычаг 1 на себя (по рисунку — направо), то нажимные диски 8 поворачиваются тягами 6 в разные стороны, отходят один относительно другого и прижимают соединительные диски 10 к неподвижным плоскостям кожуха и крышке стакана подшипников. Под действием силы трения соединительные диски удерживают от вращения ведущую шестерню конечной передачи и колеса трактора.

Рабочие тормоза трактора у пропашных тракторов слу­жат для быстрой остановки и выполнения крутых поворотов. Поэто­му у них тормоза установлены на каждую полуось.

По конструкции стояночный и рабочие тормоза дискового типа рассматриваемого трактора одинаковы.

При движении трактора соединительные диски 11  вращаются вместе с ведущими шестернями. Если нажать на педаль тормоза, то нажимные диски прижмут вращающиеся соединитель­ные диски к неподвижным стенкам кожуха. Под действием трения соединительные диски останавливаются вместе с ведущей шестер­ней 6 конечной передачи, притормаживая соответствующее веду­щее колесо. В этом положении педаль можно удерживать длитель­ное время с помощью защелки 12  горного тормоза.

У других пропашных тракторов в рабочей тормозной системе применяют ленточные механизмы. При нажатии на педаль тормоза лента 6 (см. рис. 79) прижимается к шкиву 5, в результате чего затормаживается полуось 8 и ведущее колесо.

Привод тормозов.Он предназначен для управления тормозны­ми механизмами при торможении. По принципу действия тормоз­ные приводы разделяют на механические, пневматические и гид­равлические.

 

 

Рассмотренные ранее рабочие тормозные системы - пример при­менения тормозных механизмов с механическим приводом.

В рабочей тормозной системе колесных тракторов общего назна­чения используют пневматический привод тормозов.

Тормозная система прицепа универсально-пропашного трак­тора снабжена одним воздушным баллоном 3 . Компрес­сор 1 имеет один цилиндр. Тормозной кран 7управляет тормоза­ми прицепа. Пневмопривод тормозов прицепа снабжен пневмати­ческим переходником 16 для агрегатирования с трактором. Прицеп оборудован гидроприводом тормозов. Переходник представляет со­бой тормозную камеру колесного тормоза, шток которой воздей­ствует на поршень главного цилиндра 15 гидросистемы тормозов прицепа. Когда трактор агрегатируют с прицепами, оборудован­ными пневматическими тормозами, на шток пневматического пе­реходника надевают колпачок и управляют тормозами прицепа через соединительную головку 9.

Соединительная головка, связывающая воздухопроводы трак­тора и прицепа, состоит из корпуса, обратного клапана с пружи­ной и крышки. В случае отъединения прицепа от трактора на ходу соединительная головка разъединяет шланги, а обратный клапан закрывает выход воздуха из пневмосистемы трактора.

В пневматическую тормозную систему тракторов входят также разобщительный кран 5, кран отбора воздуха, манометр 4 и трубопроводы. Разобщительный кран отключает тормозную пневмомагистраль прицепа от пневмосистемы трактора при работе без прицепа. Кран состоит из корпуса, конической пробки, пружины и рукоятки. Если рукоятка расположена вдоль корпуса, то кран открыт, а поперек корпуса — закрыт.

 

Манометр 4, установленный на щитке приборов, необходим для проверки давления воздуха в пневмоприводе и имеет верхнюю и нижнюю шкалы. По верхней шкале определяют давление воздуха в баллонах, а по нижней — в тормозной камере во время торможения.

 

http://mybiblioteka.su/mylektsiiru/baza9/2292993197410.files/image002.png

 


 15.03.2024 Гр.606 Предмет: Слесарное дело и технические измерения Тема: Приемы нарезания резьбы. Контроль качества Цель: изучить материал д...